Online Probability Density Estimation of Nonstationary Random Signal using Dynamic Bayesian Networks 109 Online Probability Density Estimation of Nonstationary Random Signal using Dynamic Bayesian Networks
نویسندگان
چکیده
We present two estimators for discrete non-Gaussian and nonstationary probability density estimation based on a dynamic Bayesian network (DBN). The first estimator is for offline computation and consists of a DBN whose transition distribution is represented in terms of kernel functions. The estimator parameters are the weights and shifts of the kernel functions. The parameters are determined through a recursive learning algorithm using maximum likelihood (ML) estimation. The second estimator is a DBN whose parameters form the transition probabilities. We use an asymptotically convergent, recursive, on-line algorithm to update the parameters using observation data. The DBN calculates the state probabilities using the estimated parameters. We provide examples that demonstrate the usefulness and simplicity of the two proposed estimators.
منابع مشابه
A Dynamic Logistic Multiple Classifier System for Online Classification
We consider the problem of online classification in nonstationary environments. Specifically, we take a Bayesian approach to sequential parameter estimation of a logistic MCS, and compare this method with other algorithms for nonstationary classification. We comment on several design considerations.
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملWavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables
Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملStable Adaptive Nonstationary Signal Detection Based on the Robuston Scheme*
The mbuston scheme is a novel reduced-detail paradigm for nonstationary signal modelinglprocessing with enhanced statistical stability. Here, we apply the robuston scheme to the problem of detecting a nonstationary random signal in white Gaussian noise. We propose two different “robuston detectors” along with signal-adaptive online implementations that perform online estimation of the signal st...
متن کامل